MTH 203: Introduction to Groups and Symmetry Homework VI

(Due 19/10/2022)

Problems for submission

1. Let G be a nontrivial group. Two elements $g, h \in G$ are said to be conjugate in G if there exists $x \in G$ such that $g=x h x^{-1}$. Now define a relation \sim_{c} on G by

$$
g \sim_{c} h \Longleftrightarrow g \text { and } h \text { are conjugate. }
$$

Show that \sim_{c} defines an equivalence relation on G.
Each equivalence class (denoted by $[g]_{c}$) induced by the relation \sim_{c} is called a conjugacy class of G.
2. Consider the partition of S_{n} into distinct conjugacy classes under the equivalence relation \sim_{c} mentioned above.
(a) If $\sigma \in S_{n}$ is an m-cycle and $\sigma^{\prime} \in S_{m}$ is an ℓ-cycle, then show that

$$
[\sigma]_{c}=\left[\sigma^{\prime}\right]_{c} \Longleftrightarrow m=\ell
$$

[Hint: Start by showing that given a permutation σ and a cycle $\left(i_{1} i_{2} \ldots i_{k}\right)$, $\left.\sigma\left(i_{1} i_{2} \ldots i_{k}\right) \sigma^{-1}=\left(\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \ldots \sigma\left(i_{k}\right)\right).\right]$
(b) Suppose that the unique cycle decomposition of a permutation $\sigma \in S_{n}$ is given by

$$
\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k_{\sigma}}
$$

where each σ_{i} is an m_{i}-cycle. Then, as $\sum_{i=1}^{k_{\sigma}} m_{i}=n$, this decomposition induces a partition P_{σ} of the integer n. (In Number Theory, a partition of a positive integer n is a way of writing n as a sum of positive integers, up to reordering of summands.) Then show that:
(i) $o(\sigma)=\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{k_{\sigma}}\right)$.
(ii) Given two permutations $\sigma_{1}, \sigma_{2} \in S_{n}$,

$$
\left[\sigma_{1}\right]_{c}=\left[\sigma_{2}\right]_{c} \Longleftrightarrow P_{\sigma_{1}}=P_{\sigma_{2}}
$$

(c) Using (b), determine the number of distinct conjugacy classes of S_{n}.

Problems for practice

1. Establish the assertions in 5.1 (iii), 5.1 (viii), 5.2 (ii), 5.2 (v) - (vi), and 5.3 (iii) of the Lesson Plan.
2. Show that for $n \geq 3$, there exists a momomorphism $D_{2 n} \rightarrow S_{n}$.
3. Show that for $n \geq 3$, there exists a momomorphism $S_{n} \rightarrow S_{m}$ for every $m>n$.
4. Show that every normal subgroup of S_{n} is a disjoint union of conjugacy classes.
5. For $n \geq 3$, show that the following sets of transpositions generate S_{n}.
(a) The set $A=\{(i i+1): 1 \leq i \leq n-1\}$.
(b) For $1 \leq j \leq n$, the set $B_{j}=\{(j i): 1 \leq i \leq n$ and $j \neq i\}$.
[Hint: Start by showing that every other transposition (and hence every k-cycle) is a product of the transpositions in either A or the B_{j}. Then use the unique cycle decomposition property of a permutation.]
