MTH 203: Introduction to Groups and Symmetry Homework VI

(Due 19/10/2022)

Problems for submission

1. Let G be a nontrivial group. Two elements $g, h \in G$ are said to be *conjugate in* G if there exists $x \in G$ such that $g = xhx^{-1}$. Now define a relation \sim_c on G by

 $g \sim_c h \iff g$ and h are conjugate.

Show that \sim_c defines an equivalence relation on G.

Each equivalence class (denoted by $[g]_c$) induced by the relation \sim_c is called a *conjugacy class of G*.

- 2. Consider the partition of S_n into distinct conjugacy classes under the equivalence relation \sim_c mentioned above.
 - (a) If $\sigma \in S_n$ is an *m*-cycle and $\sigma' \in S_m$ is an ℓ -cycle, then show that

$$[\sigma]_c = [\sigma']_c \iff m = \ell.$$

[Hint: Start by showing that given a permutation σ and a cycle $(i_1 i_2 \ldots i_k)$, $\sigma(i_1 i_2 \ldots i_k)\sigma^{-1} = (\sigma(i_1)\sigma(i_2)\ldots\sigma(i_k))$.]

(b) Suppose that the unique cycle decomposition of a permutation $\sigma \in S_n$ is given by

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_{k_\sigma},$$

where each σ_i is an m_i -cycle. Then, as $\sum_{i=1}^{k_{\sigma}} m_i = n$, this decomposition induces a partition P_{σ} of the integer n. (In Number Theory, a partition of a positive

integer n is a way of writing n as a sum of positive integers, up to reordering of summands.) Then show that:

- (i) $o(\sigma) = \text{lcm}(m_1, m_2, \dots, m_{k_{\sigma}}).$
- (ii) Given two permutations $\sigma_1, \sigma_2 \in S_n$,

$$[\sigma_1]_c = [\sigma_2]_c \iff P_{\sigma_1} = P_{\sigma_2}.$$

(c) Using (b), determine the number of distinct conjugacy classes of S_n .

Problems for practice

- 1. Establish the assertions in 5.1 (iii), 5.1 (viii), 5.2 (ii), 5.2 (v) (vi), and 5.3 (iii) of the Lesson Plan.
- 2. Show that for $n \geq 3$, there exists a momomorphism $D_{2n} \to S_n$.

- 3. Show that for $n \ge 3$, there exists a momomorphism $S_n \to S_m$ for every m > n.
- 4. Show that every normal subgroup of S_n is a disjoint union of conjugacy classes.
- 5. For $n \geq 3$, show that the following sets of transpositions generate S_n .
 - (a) The set $A = \{(i i + 1) : 1 \le i \le n 1\}.$
 - (b) For $1 \le j \le n$, the set $B_j = \{(j i) : 1 \le i \le n \text{ and } j \ne i\}$.

[Hint: Start by showing that every other transposition (and hence every k-cycle) is a product of the transpositions in either A or the B_j . Then use the unique cycle decomposition property of a permutation.]